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Zaragozic acid A (1) is a natural product isolated from 
Sporormiella intermedia and Leptodonitium elatius.' It 
is an important synthetic objective because it is a 
competitive inhibitor of squalene synthasea2 Its inhibi- 
tion at the picomolar level makes it a promising candi- 
date in the search for drugs that regulate cholesterol 
levels. A few synthetic approaches to the 2,8-dioxabicyclo- 
[3.2.lloctane skeleton have been ~ommunicated.~ As part 
of our continuing interest in bridged compounds,4 we 
sought an efficient route to a suitably functionalized 
bicyclic intermediate and report herein the direct syn- 
thesis of diol 2. 
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Our retrosynthetic analysis is shown below. We plan 
to introduce the a-hydroxy acid subunit via keto acid 3. 
We plan to synthesize acid 3 from olefinic ketone 4 via 
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the carboxylation of the bridgehead position followed by 
oxidation of the alkene. We envision that the functional- 
ity present in 4 could be readily accessible by oxidation 
of a compound similar to diol 2. 
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We next converted hemiacetal 5 (generated from D- 
arabinose in five steps6 ) into thioacetal 6 in 58% 
overallyield by thioacetal formation followed by protec- 
tion of the 1,3-diol. Although 6 could not be prepared 
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by treatment of the diol with benzaldehyde in the 
presence ofp-toluenesulfonic acid (PTSA), it was cleanly 
generated using a catalytic amount of PTSA and the 
dimethyl acetal of benzaldehyde. Attempts to deprotect 
the thioacetal in 6 using a variety of reagents6 (HgC12, 

(OCOCF&; Tl(N0313; Et30BF4; AgOAc) failed to afford 
aldehyde 9. In the course of the unsuccessful deprotec- 
tion experiments, we found that treatment of 6 with 
mercuric acetate in acetic acid produced a stable ace- 
tate 7 as a single diastereomer in 92% yield. Unfortu- 
nately, hydrolysis of the acetate led to a mixture of 
products. 

Since thioacetals have been employed by Mukaiyama 
and by Reetz in aldol-type reactions with enol silyl 
ethers,' we reacted thioacetal 6 with the enol silyl ether 
of 2-butanone using either trityl tetrafluoroborate or 
stannic chloride as the Lewis acid. Both reactions led to 
the decomposition of 6. However, treatment of acetate 
7 with the enol silyl ether of 2-butanone in the presence 
of trimethylsilyltriflate at 0 "C afforded ketone 8 in 43% 
yield. While boron trifluoride etherate was not effective 
in promoting this reaction, the use of stannic chloride at 
-78 "C provided ketone 8 as a single diastereomer in 65% 
yield. To the best of our knowledge, these reactions 
represent the first uses of an a-acetoxy sulfide in an aldol- 
type reaction. 

With ketone 8 in hand, we focused on the transforma- 
tion of 8 into 2. The removal of the benzylidene acetal 
with 2 N sulfuric acid at 100 "C led to the cleavage of 
benzylidene acetal and to the closure to the bicyclic ketal 
10 in 46% yield. The reaction of 8 with catalytic PTSA 
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in methanol at 60 "C afforded ketal 10 in 69% yield. The 
structure of 10 was determined by COSY and NOESY 
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2-D NMR experiments. Removal of the benzoate groups 
with LAH afforded diol 2 in 77% yield. 

In summary, we have demonstrated that the 2,8- 
dioxabicyclo[3.2.lloctane ring system present in zaragozic 
acid A is efficiently accessible from D-arabinose. The key 
step, the reaction of acetate 7 with an enol silyl ether, 
appears to be a useful method for forming carbon-carbon 
bonds in highly functionalized systems. Efforts are now 
underway to generate an intermediate suitable for the 
total synthesis of zaragozic acid. 
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